首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mitochondria-derived reactive oxygen species mediate blue light-induced death of retinal pigment epithelial cells
Authors:King Ayala  Gottlieb Eyal  Brooks David G  Murphy Michael P  Dunaief Joshua L
Institution:F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
Abstract:Throughout the lifetime of an individual, light is focused onto the retina. The resulting photooxidative stress can cause acute or chronic retinal damage. The pathogenesis of age-related macular degeneration (AMD), the leading cause of legal blindness in the developed world, involves oxidative stress and death of the retinal pigment epithelium (RPE) followed by death of the overlying photoreceptors. Evidence suggests that damage due to exposure to light plays a role in AMD and other age-related eye diseases. In this work a system for light-induced damage and death of the RPE, based on the human ARPE-19 cell line, was used. Induction of mitochondria-derived reactive oxygen species (ROS) is shown to play a critical role in the death of cells exposed to short-wavelength blue light (425 +/- 20 nm). ROS and cell death are blocked either by inhibiting the mitochondrial electron transport chain or by mitochondria-specific antioxidants. These results show that mitochondria are an important source of toxic oxygen radicals in blue light-exposed RPE cells and may indicate new approaches for treating AMD using mitochondria-targeted antioxidants.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号