首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Polyelectrolyte complex membranes for specific cell adhesion
Authors:Wan Andrew C A  Tai Benjamin C U  Schumacher Karl M  Schumacher Annegret  Chin Sau Yin  Ying Jackie Y
Institution:Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669. awan@ibn.a-star.edu.sg
Abstract:The presentation of bioactive ligands on biomaterial surfaces is often confounded by the adsorption of proteins present in the biological milieu, rendering any type of cellular response nonspecific. We have engineered a polyelectrolyte complex membrane that demonstrates specific adhesion of various cell types for both two-dimensional (2D) and three-dimensional (3D) cell culture systems. Specific cell adhesion is achieved by a three-tiered structure: a silica cross-linked polycation as the bottom (first) tier, a nonfouling polyanion-poly(ethylene glycol) (PEG) conjugate as the intermediate (second) tier, and the cell-adhesion ligand as the top (third) tier. Each tier of the membrane was characterized in terms of chemical composition and dimensions. Epithelial cells (primary human cortical renal cells and a hepatocellular carcinoma cell line) cultured on the membranes exhibited little cell attachment on the polyanion-PEG second tier and good cell adhesion on the RGD-modified third tier. Thus, the second tier allowed the effect of cell adhesion due to the ligand (third tier) to be isolated and distinguished from nonspecific cell attachment to the first tier. For the culturing of cells in three dimensions, the three-tiered membrane system was applied using a highly swellable chitosan membrane as the first tier. The resulting cell-membrane construct was uniformly dispersed and centrifuged to form a matrix that interacted intimately with cells in the form of a pellet. Presentation of RGD in the latter format enhanced the viability of human mesenchymal stem cells (hMSCs) over controls without RGD.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号