首页 | 本学科首页   官方微博 | 高级检索  
     


Hydrodynamic lubrication in fully plastic asperity contacts
Authors:Yongbin Zhang
Affiliation:1. College of Mechanical and Energy Engineering, Changzhou University, Changzhou, Jiangsu Province, China
Abstract:A line contact inlet zone analysis is carried out for the hydrodynamic lubrication in a fully plastic asperity contact. A governing equation of the central film thickness i.e. the film thickness in the fully plastic contact area is derived. An equation predicting this film thickness is also derived. It is found that for the fully plastic contact, under relatively light loads the prediction accuracy for the central film thickness is good, while at the load heavy enough the prediction equation greatly overestimates the central film thickness and the central film thickness solved from the analytical governing equation is significantly low showing the asperity in boundary layer lubrication. For the fully plastic contact, the central film thickness is nearly half of that obtained based on the elastic contact assumption for relatively light loads or even lower for heavier loads. The hydrodynamic lubrication is found difficult to form in the fully plastic asperity contact for the carried load heavy enough or the significantly low sliding speed between the asperities. To achieve a high hydrodynamic lubrication film thickness in the fully plastic asperity contact it is recommended to employ a high sliding speed or a high fluid viscosity. However, in the fully plastic asperity contact, the potential hydrodynamic load-carrying capacity is limited and much smaller than that based on the elastic contact assumption or predicted by conventional line contact elasto-hydrodynamic lubrication theory.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号