首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Dirac delta function in two settings of Reverse Mathematics
Authors:Sam Sanders  Keita Yokoyama
Institution:1. Department of Mathematics, Ghent University, Krijgslaan 281, 9000, Gent, Belgium
2. Mathematical Institute, Tohoku University, Sendai, 980-8578, Japan
Abstract:The program of Reverse Mathematics (Simpson 2009) has provided us with the insight that most theorems of ordinary mathematics are either equivalent to one of a select few logical principles, or provable in a weak base theory. In this paper, we study the properties of the Dirac delta function (Dirac 1927; Schwartz 1951) in two settings of Reverse Mathematics. In particular, we consider the Dirac Delta Theorem, which formalizes the well-known property ${\int_\mathbb{R}f(x)\delta(x)\,dx=f(0)}$ of the Dirac delta function. We show that the Dirac Delta Theorem is equivalent to weak K?nig’s Lemma (see Yu and Simpson in Arch Math Log 30(3):171–180, 1990) in classical Reverse Mathematics. This further validates the status of WWKL0 as one of the ‘Big’ systems of Reverse Mathematics. In the context of ERNA’s Reverse Mathematics (Sanders in J Symb Log 76(2):637–664, 2011), we show that the Dirac Delta Theorem is equivalent to the Universal Transfer Principle. Since the Universal Transfer Principle corresponds to WKL, it seems that, in ERNA’s Reverse Mathematics, the principles corresponding to WKL and WWKL coincide. Hence, ERNA’s Reverse Mathematics is actually coarser than classical Reverse Mathematics, although the base theory has lower first-order strength.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号