首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Analysis of neutral surfactants by non-aqueous capillary electrophoresis using an electroosmotic flow reversal
Authors:Desbène A M  Geulin L  Morin C J  Desbène P L
Institution:Laboratoire d'Analyse des Systèmes Organiques Complexes, UPRES EA 3233 (SMS) IRCOF et IFRMP, Université de Rouen, 55 Rue Saint Germain, 27000 Evreux, France.
Abstract:The separation of KM 20, that is in fact a mixture of non-ionic surfactants, was carried out by non-aqueous capillary electrophoresis. This complex mixture resulting from the condensation of ethylene oxide with fatty alcohols does not have chromophoric moieties. So, we analysed it after derivatization by means of 3,5-dinitrobenzoyl chloride. The proposed approach is based both on the formation of complexes with alkaline or ammonium cations in methanol and on the utilisation of a positively charged capillary. From a comparative study on the capillary treatment procedure, we used hexadimethrine bromide as electroosmotic flow reverser in order to obtain both repeatable analyses and good resolutions of the largest KM 20 oligomers. Then, among the five cations used to form complexes with KM 20, we pointed out that ammonium cation led to the best resolutions. Moreover, we evidenced that the counter-ion of this cation had a great influence on resolution because it modified the magnitude of electroosmotic flow. Ion pair formation that is more or less strong between ammonium and its counter-ion was involved in this variation of electroosmotic flow. So, we calculated the association constants for various ammonium salts in methanol. Then, using ammonium chloride as background electrolyte, we optimised the concentration of this salt, in methanol, in order to reach the optimal separation of KM 20 oligomers. Thus, a baseline separation was obtained by using 6 x 10(-2) mol/L NH4Cl as running electrolyte. In these conditions, we separated, in about 30 min, more than 30 oligomers of KM 20. The distribution of these oligomers that was determined from the optimal separation, appeared consistent with that obtained from HPLC analyses. Indeed, we determined that the mean ethoxylation number was equal to 18 while its real value is equal to 20.
Keywords:Non-aqueous capillary electrophoresis  Electroosmotic flow reversal  Neutral surfactants  Hexadimethrine coating  Dissociation constants
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号