首页 | 本学科首页   官方微博 | 高级检索  
     


Application of partial least squares discriminant analysis and variable selection procedures: a 2D-PAGE proteomic study
Authors:Emilio Marengo  Elisa Robotti  Marco Bobba  Alberto Milli  Natascia Campostrini  Sabina Carla Righetti  Daniela Cecconi  Pier Giorgio Righetti
Affiliation:(1) Dipartimento di Scienze dell’Ambiente e della Vita, Università degli Studi del Piemonte Orientale, Via Bellini 25/G, 15100 Alessandria, Italy;(2) Dipartimento Scientifico e Tecnologico, Laboratorio di Proteomica, Università degli Studi di Verona, Strada le Grazie 15, 37134 Verona, Italy;(3) Dipartimento di Medicina Clinica e Sperimentale, Sezione di Medicina Interna B, Università degli Studi di Verona, P.le L.A. Scuro 10, 37134 Verona, Italy;(4) Istituto Nazionale per lo Studio e la Cura dei Tumori, Via Venezian 1, 20133 Milano, Italy;(5) Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
Abstract:2D gel electrophoresis is a tool for measuring protein regulation, involving image analysis by dedicated software (PDQuest, Melanie, etc.). Here, partial least squares discriminant analysis was applied to improve the results obtained by classic image analysis and to identify the significant spots responsible for the differences between two datasets. A human colon cancer HCT116 cell line was analyzed, treated and not treated with a new histone deacetylase inhibitor, RC307. The proteins regulated by RC307 were detected by analyzing the total lysates and nuclear proteome profiles. Some of the regulated spots were identified by tandem mass spectrometry. The preliminary data are encouraging and the protein modulation reported is consistent with the antitumoral effect of RC307 on the HCT116 cell line. Partial least squares discriminant analysis coupled with backward elimination variable selection allowed the identification of a larger number of spots than classic PDQuest analysis. Moreover, it allows the achievement of the best performances of the model in terms of prediction and provides therefore more robust and reliable results. From this point of view, the multivariate procedure applied can be considered a good alternative to standard differential analysis, also taking into account the interdependencies existing among the variables.
Keywords:Two-dimensional maps  Proteomics  Multivariate statistical methods  Partial least squares discriminant analysis  Variable selection procedures
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号