首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geometrical optimization of a surface DBD powered by a nanosecond pulsed high voltage
Authors:AC Aba'a Ndong  N Zouzou  N Benard  E Moreau
Institution:Pprime Institute, CNRS – Poitiers University – ENSMA, SP2MI – Téléport 2 Boulevard Marie & Pierre Curie, BP 30179, F86962 Futuroscope Chasseneuil Cedex, France;Budapest University of Technology and Economics
Abstract:In this study, surface Dielectric Barrier Discharge (DBD) actuators powered by nanosecond pulsed high voltage are investigated. The goal is to experimentally characterize the surface DBD actuators in terms of electrical and geometrical parameters.The actuators are made of two conducting electrodes separated by a thin dielectric (Kapton films) and arranged asymmetrically. The active electrode is connected to a pulsed high voltage power supply (voltage up to ±10 kV, rise and fall times of 50 ns and pulse width of 250 ns) and the second electrode is grounded.The experimental results show that the energy per pulse (normalized by the length of the active electrode) is smaller when one increases the inter-electrode spacing between 1 and 3 mm, the thickness of the dielectric barrier between 120 and 360 μm or the length of the electrodes between 10 and 50 cm, for both applied voltage polarities.Optical characterization of the plasma layer for different electrode gaps has been investigated by using an ICCD camera. Results indicate that the plasma produced by positive and negative rising voltage propagates in a streamer-like regime with numerous and well-distributed channels, for any electrode gap distance. However, the positive and negative falling voltage produces similar discharges only for large electrode gaps. In this case, the plasma layer starts from a corona spot in contact with the active electrode and expands in the direction of the grounded electrode in a plume shape.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号