首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of triangular vacancy defect on thermal conductivity and thermal rectification in graphene nanoribbons
Authors:Ping Yang  Xialong Li  Yanfan Zhao  Haiying Yang  Shuting Wang
Institution:1. Laboratory of Advanced Manufacturing & Reliability for MEMS/NEMS/OEDS, Jiangsu University, Zhenjiang 212013, PR China;2. School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China;3. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
Abstract:We investigate the thermal transport properties of armchair graphene nanoribbons (AGNRs) possessing various sizes of triangular vacancy defect within a temperature range of 200–600 K by using classical molecular dynamics simulation. The results show that the thermal conductivities of the graphene nanoribbons decrease with increasing sizes of triangular vacancy defects in both directions across the whole temperature range tested, and the presence of the defect can decrease the thermal conductivity by more than 40% as the number of removed cluster atoms is increased to 25 (1.56% for vacancy concentration) owing to the effect of phonon–defect scattering. In the meantime, we find the thermal conductivity of defective graphene nanoribbons is insensitive to the temperature change at higher vacancy concentrations. Furthermore, the dependence of temperatures and various sizes of triangular vacancy defect for the thermal rectification ration are also detected. This work implies a possible route to achieve thermal rectifier for 2D materials by defect engineering.
Keywords:Armchair graphene nanoribbons  Triangular vacancy defect  Thermal conductivity  Thermal rectification  Molecular dynamics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号