首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis and enzyme inhibitory activity of the s-nucleoside analogue of the ribitylaminopyrimidine substrate of lumazine synthase and product of riboflavin synthase
Authors:Talukdar Arindam  Illarionov Boris  Bacher Adelbert  Fischer Markus  Cushman Mark
Affiliation:Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmaceutical Sciences, and Purdue Cancer Center, Purdue University, West Lafayette, IN 47907, USA.
Abstract:Lumazine synthase and riboflavin synthase catalyze the last two steps in the biosynthesis of riboflavin. To obtain structural and mechanistic probes of these two enzymes, as well as inhibitors of potential value as antibiotics, a sulfur analogue of the pyrimidine substrate of the lumazine synthase-catalyzed reaction and product of the riboflavin synthase-catalyzed reaction was designed. Facile syntheses of the S-nucleoside 5-amino-6-(D-ribitylthio)pyrimidine-2,4(1H,3H)-dione hydrochloride (15) and its nitro precursor 5-nitro-6-(D-ribitylthio)pyrimidine-2,4(1H,3H)-dione (14) are described. These compounds were tested against lumazine synthase and riboflavin synthase obtained from a variety of microorganisms. Compounds 14 and 15 were found to be inhibitors of both riboflavin synthase and lumazine synthase. Compound 14 is an inhibitor of Bacillus subtilis lumazine synthase (Ki 26 microM), Schizosaccharomyces pombe lumazine synthase (Ki 2.0 microM), Mycobacterium tuberculosis lumazine synthase (Ki 11 microM), Escherichia coli riboflavin synthase (Ki 2.7 microM), and Mycobacterium tuberculosis riboflavin synthase (Ki 0.56 muM), while compound 15 is an inhibitor of B. subtilis lumazine synthase (Ki 2.6 microM), S. pombe lumazine synthase (Ki 0.16 microM), M. tuberculosis lumazine synthase (Ki 31 microM), E. coli riboflavin synthase (Ki 47 microM), and M. tuberculosis riboflavin synthase (Ki 2.5 microM).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号