首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dual-tracer fluorescence thermometry measurements in a heated channel
Authors:Myeongsub Kim  Minami Yoda
Institution:(1) George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA
Abstract:The exponential growth of component density in microelectronics has renewed interest in compact and high heat flux thermal management technologies that can handle local heat fluxes exceeding 1 kW/cm2. Accurate and spatially resolved thermometry techniques that can measure liquid-phase temperatures without disturbing the coolant flow are important in developing new heat exchangers employing forced-liquid and evaporative cooling. This paper describes water temperature measurements using dual-tracer fluorescence thermometry (DFT) with fluorescein and sulforhodamine B in laminar Poiseuille flow through polydimethyl siloxane-glass channels heated on one side. The major advantage of using the ratio of the signals from these two fluorophores is their temperature sensitivity of 4.0–12% per °C—a significant improvement over previous DFT studies at these spatial resolutions. For an in-plane spatial resolution of 30 μm, the average experimental uncertainties in the temperature data are estimated to be 0.3°C.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号