首页 | 本学科首页   官方微博 | 高级检索  
     


Prediction for discrete time series
Authors:Gusztáv?Morvai,Benjamin?Weiss  author-information"  >  author-information__contact u-icon-before"  >  mailto:weiss@math.huji.ac.il"   title="  weiss@math.huji.ac.il"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:(1) Research Group for Informatics and Electronics of the Hungarian Academy of Sciences, Budapest, 1521, Goldmann György tér 3, Hungary;(2) Hebrew University of Jerusalem, Jerusalem, 91904, Israel
Abstract:Let {Xn} be a stationary and ergodic time series taking values from a finite or countably infinite set MediaObjects/s00440-004-0386-3flb1.gif Assume that the distribution of the process is otherwise unknown. We propose a sequence of stopping times lambdan along which we will be able to estimate the conditional probability P(MediaObjects/s00440-004-0386-3flb2.gif=x|X0,...,MediaObjects/s00440-004-0386-3flb3.gif) from data segment (X0,...,MediaObjects/s00440-004-0386-3flb3.gif) in a pointwise consistent way for a restricted class of stationary and ergodic finite or countably infinite alphabet time series which includes among others all stationary and ergodic finitarily Markovian processes. If the stationary and ergodic process turns out to be finitarily Markovian (among others, all stationary and ergodic Markov chains are included in this class) then MediaObjects/s00440-004-0386-3flb4.gif almost surely. If the stationary and ergodic process turns out to possess finite entropy rate then lambdan is upperbounded by a polynomial, eventually almost surely.Mathematics Subject Classification (2000): 62G05, 60G25, 60G10
Keywords:Nonparametric estimation  Stationary processes
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号