首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical methods for the linear Boltzmann transport equation in slab geometry
Authors:C V Pao
Abstract:An iterative method for computing numerical solutions of a finite-difference system corresponding to the linear Boltzmann equation in slab geometry is presented. This iterative scheme gives a straightforward marching process starting from the given boundary and initial conditions. It is shown that with a suitable initial iteration the sequence of iterations converges monotonically to a unique solution of the finite-difference system. This monotone convergence leads to improved upper and lower bounds of the solution in each iteration, and to the well-posedness of the discrete system in the sense of Hadamard. It also leads to the convergence of the discrete system to the continuous system as the mesh size of the space–velocity–time variables approaches to zero. Under a mild restriction on the time-increment the discrete system is numerically stable, independent of the mesh-size of the space and velocity. An error estimate for the computed solution due to simultaneous initial and iteration error is obtained. Also given are some numerical results for the time-dependent and the steady-state solutions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号