首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecular design of specific metal-binding peptide sequences from protein fragments: theory and experiment
Authors:Kozísek Milan  Svatos Ales  Budesínský Milos  Muck Alexander  Bauer Mikael C  Kotrba Pavel  Ruml Tomás  Havlas Zdenek  Linse Sara  Rulísek Lubomír
Institution:Gilead Sciences & IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo námestí. 2, 16610 Prague 6 (Czech Republic), Fax: (+420) 220-183-578.
Abstract:A novel strategy is presented for designing peptides with specific metal-ion chelation sites, based on linking computationally predicted ion-specific combinations of amino acid side chains coordinated at the vertices of the desired coordination polyhedron into a single polypeptide chain. With this aim, a series of computer programs have been written that 1) creates a structural combinatorial library containing Z(i)-(X)(n)-Z(j) sequences (n=0-14; Z: amino acid that binds the metal through the side chain; X: any amino acid) from the existing protein structures in the non-redundant Protein Data Bank; 2) merges these fragments into a single Z(1)-(X)(n(1) )-Z(2)-(X)(n(2) )-Z(3)-(X)(n(3) )--Z(j) polypeptide chain; and 3) automatically performs two simple molecular mechanics calculations that make it possible to estimate the internal strain in the newly designed peptide. The application of this procedure for the most M(2+)-specific combinations of amino acid side chains (M: metal; see L. Rulísek, Z. Havlas J. Phys. Chem. B 2003, 107, 2376-2385) yielded several peptide sequences (with lengths of 6-20 amino acids) with the potential for specific binding with six metal ions (Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+) and Hg(2+)). The gas-phase association constants of the studied metal ions with these de novo designed peptides were experimentally determined by MALDI mass spectrometry by using 3,4,5-trihydroxyacetophenone as a matrix, whereas the thermodynamic parameters of the metal-ion coordination in the condensed phase were measured by isothermal titration calorimetry (ITC), chelatometry and NMR spectroscopy methods. The data indicate that some of the computationally predicted peptides are potential M(2+)-specific metal-ion chelators.
Keywords:ab initio calculations  mass spectrometry  metal‐ion chelation  molecular design  peptides
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号