首页 | 本学科首页   官方微博 | 高级检索  
     


Laminar boundary layer on blunt bodies with account for vorticity of the external flow
Authors:I. N. Muizinov
Abstract:This paper presents the technique for and results from numerical calculations of the hypersonic laminar boundary layer on blunted cones with account for the vorticity of the external flow caused by the curved bow shock wave. It is assumed that the air in the boundary layer is in the equilibrium dissociated state, but the Prandtl number is assumed constant, sgr=0.72. The calculations were made in the range of velocities 3–8 km/sec, cone half-anglesthetak=0°–20°. With account for the vortical interaction of the boundary layer with the external flow, the distribution of the thermal flux and friction will depend on the freestream Reynolds number (other conditions being the same). In the calculations the Reynolds number Rinfin, calculated from the freestream parameters and the radius of the spherical blunting, varies from 2.5·103 to 5.104. For the smaller Reynolds numbers the boundary layer thickness on the blunting becomes comparable with the shock standoff, and for Rinfin<2.5·103 it is apparent that we must reconsider the calculation scheme. With Rinfin>5·104 for cones which are not very long the vortical interaction becomes relatively unimportant. The results of the calculations are processed in accordance with the similarity criteria for hypersonic viscous gas flow past slender blunted cones [1, 2].
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号