首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Maximum Divert for Planetary Landing Using Convex Optimization
Authors:Matthew W Harris  Behçet Açıkmeşe
Institution:1. Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, 1 University Station, C0600, Austin, TX, 78712, USA
Abstract:This paper presents a real-time solution method of the maximum divert trajectory optimization problem for planetary landing. In mid-course, the vehicle is to abort and retarget to a landing site as far from the nominal as physically possible. The divert trajectory must satisfy velocity constraints in the range and cross range directions and a total speed constraint. The thrust magnitude is bounded above and below so that once on, the engine cannot be turned off. Because this constraint is not convex, it is relaxed to a convex constraint and lossless convexification is proved. A transformation of variables is introduced in the nonlinear dynamics and an approximation is made so that the problem becomes a second-order cone problem, which can be solved to global optimality in polynomial time whenever a feasible solution exists. A number of examples are solved to illustrate the effectiveness and efficiency of the solution method.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号