首页 | 本学科首页   官方微博 | 高级检索  
     


Constitutive modeling and computational implementation for finite strain plasticity
Authors:Kenneth W. Reed  Satya N. Atluri
Affiliation:1. Southwest Research Institute, San Antonio, TX 78284, USA;2. Georgia Institute of Technology Atlanta, GA 30332, USA
Abstract:This paper describes a simple alternate approach to the difficult problem of modeling material behavior. Starting from a general representation for a rate-type constitutive equation, it is shown by example how sets of test data may be used to derive restrictions on the scalar functions appearing in the representation. It is not possible to determine these functions from experimental data, but the aforementioned restrictions serve as a guide in their eventual definition. The implications are examined for hypo-elastic, isotropically hardening plastic, and kinematically hardening plastic materials. A simple model for the evolution of the “back-stress,” in a kinematic-hardening plasticity theory, that is entirely analogous to a hypoelastic stress-strain relation is postulated and examined in detail in modeling a finitely plastic tension-torsion test. The implementation of rate-type material models in finite element algorithms is also discussed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号