首页 | 本学科首页   官方微博 | 高级检索  
     


Conductivity dispersion in supercooled calcium potassium nitrate: caged ionic motion viewed as part of standard behaviour
Authors:Funke Klaus  Singh Prabhakar  Banhatti Radha Dilip
Affiliation:Institute of Physical Chemistry and Sonderforschungsbereich 458, University of Münster, Corrensstrasse 30, D - 48149, Münster, Germany. k.funke@uni-muenster.de
Abstract:Conductivity spectra of ionic materials with disordered structures are usually thought to consist of several parts, i.e., the DC conductivity, a power-law component, a nearly-constant-loss feature (if identified) and the (far-)infrared conductivity caused by vibrational motion. Such a decomposition may, however, easily lead to a misinterpretation of the underlying dynamics. Here, we discuss broad-band conductivity data of the supercooled glass-forming melt calcium potassium nitrate, of composition 0.4 Ca(NO(3))(2).0.6 KNO(3), often abbreviated as CKN. Data have been taken at frequencies up to the far infrared. We show that the frequency-dependent conductivity is very well reproduced by a superposition of only two components. One of them is due to vibrations, the other is caused by displacements of the mobile ions. The latter component, which does not follow a power law, is described in terms of a physical model called the MIGRATION concept. This model treatment has been found to apply in many solid electrolytes as well and is, therefore, considered to provide a "standard" formulation of the ion dynamics. The gradual transition from a correlated forward-backward ("caged") ionic motion to a stepwise translational motion may be regarded as the main feature of the MIGRATION concept.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号