首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modeling and Simulation of Effects of Turbulence on Vaporization, Mixing and Combustion of Liquid-Fuel Sprays
Authors:A Sadiki  M Chrigui  J Janicka  M R Maneshkarimi
Institution:(1) Institute of Energy and Power Plant Technology, Department of Mechanical Engineering, Technical University of Darmstadt, Germany;(2) Institute of Mechanics, Department of Mechanics, Darmstadt University of Technology, Germany
Abstract:The objective of this work is twofold. Firstly, the effects of turbulence intensity variations on the turbulent droplet dispersion, vaporization and mixing for non-reacting sprays (with and without swirl) are pointed out. Secondly, the effects of the coupling of the turbulence modulation with external parameters, such as swirl intensity, on turbulent spray combustion are analyzed in configurations of engineering importance. This is achieved by using advanced models for turbulence, evaporation and turbulence modulation implemented into FASTEST-LAG3D-codes: (1) To highlight the influence of turbulence modulation on some spray properties, a thermodynamically consistent modulation model has been considered besides the standard assumption and the well known Crowe's model. For turbulent droplet dispersion, we rely on the Markov-sequence formulation. (2) In order to characterize phase transition processes ongoing on droplets surfaces, a non-equilibrium evaporation model shows better agreement with experiments in comparison with the quasi-equilibrium-based evaporation models often used. (3) The results of turbulence intensity variations reveal the existence of a limited range out of which the increase or decrease of the turbulence intensity affects no more the efficiency of the heat and mass transfer. A derived characteristic number, a vaporization Damkhöler number, possesses a critical value which separates two different behavior regimes with respect to the turbulence/droplet vaporization interactions. (4) Under reacting conditions, it is shown how the evaporation characteristics, mixing rate and combustion process are strongly influenced by swirl intensity and turbulence modulation. In particular, the turbulence modulation modifies the evaporation rate, which in turn influences the mixing and the species concentration distribution. In the case under investigation, it is demonstrated that this effect cannot be neglected for low swirl intensities (Sw.Nu. ≤ 1) in the region far from the nozzle, and close to the nozzle for high swirl number intensities. In providing these particular characteristics, a reliable control of the mixing of gaseous fuel and air in evaporating and reacting sprays, and a possible optimization of the mixing process can tentatively be achieved.
Keywords:reacting liquid-fuel sprays  modeling and simulation  vaporization  mixing  turbulence modulation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号