首页 | 本学科首页   官方微博 | 高级检索  
     


Superconductivity in the exactly solvable model of pseudogap state: The absence of self-averaging
Authors:É. Z. Kuchinskii  M. V. Sadovskii
Affiliation:(1) Institute of Electrophysics, Ural Division, Russian Academy of Sciences, ul. Komsomol’skaya 34, Yekaterinburg, 620016, Russia
Abstract:The features of the superconducting state are studied in the simple exactly solvable model of the pseudogap state induced by fluctuations of the short-range “dielectric” order in the model of the Fermi surface with “hot” spots. The analysis is carried out for arbitrary short-range correlation lengths ξcorr. It is shown that the superconducting gap averaged over such fluctuations differs from zero in a wide temperature range above the temperature T c of the uniform superconducting transition in the entire sample, which is a consequence of non-self-averaging of the superconducting order parameter over the random fluctuation field. In the temperature range T>T c, superconductivity apparently exists in individual regions (drops). These effects become weaker with decreasing correlation length ξcorr; in particular, the range of existence for drops becomes narrower and vanishes as ξcorr → 0, but for finite values of ξcorr, complete self-averaging does not take place.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号