首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Controlling coupling reaction of EDC and NHS for preparation of collagen gels using ethanol/water co-solvents
Authors:Nam Kwangwoo  Kimura Tsuyoshi  Kishida Akio
Institution:Division of Biofunctional Molecules, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, Japan.
Abstract:To control the crosslinking rate of the collagen gel, ethanol/water co-solvent was adopted for the reaction solvent for the collagen microfibril crosslinking. Collagen gel was prepared by using EDC and NHS as coupling agents. Ethanol did not denaturate the helical structure of the collagen and prevented the hydrolysis of EDC, but showed the protonation of carboxylate anions. In order to control the intra- and interhelical crosslink of the collagen triple helix, variations of the mole ratio of carboxyl group/EDC/NHS, and of the ethanol mole concentration were investigated. Increase in the EDC ratio against the carboxyl group increased the crosslinking rate. Furthermore, an increase in the ethanol mole concentration resulted in an increase of the crosslinking rate until ethanol mole concentration was 0.12, but showed gradual decrease as the ethanol mole concentration was further increased. This is because the adsorption of solvent by the collagen gel, protonation of carboxylate anion, and hydrolysis of EDC is at its most optimum condition for the coupling reaction when the ethanol mole concentration is 0.12. The re-crosslinking of the collagen gel showed an increase in the crosslinking rate, but did not show further increase when the coupling reaction was executed for the third time. This implied that the highest possible crosslinking rate for the intra- and interhelical is approximately 60% when EDC/NHS is used.
Keywords:collagen gel  crosslinking  EDC  ethanol
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号