首页 | 本学科首页   官方微博 | 高级检索  
     


The hapticity of octafluorocyclooctatetraene in its first-row mononuclear transition metal carbonyl complexes: effect of perfluorination
Authors:Hui Wang  Hongyan Wang  Dong Die  R. Bruce King
Affiliation:1. School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, China
2. School of Physics and Chemistry, Research Center for Advanced Computation, Xihua University, Chengdu, 610039, China
3. Department of Chemistry and Center for Computational Quantum Chemistry, University of Georgia, Athens, GA, 30602, USA
Abstract:The iron tricarbonyl complex of octafluorocyclooctatetraene was synthesized by Hughes and co-workers and shown by X-ray crystallography to have a trihapto–monohapto structure (η3,1-C8F8)Fe(CO)3 in contrast to the tetrahapto structure (η4-C8H8)Fe(CO)3 formed by the non-fluorinated cyclooctatetraene. This difference has stimulated a comprehensive density functional theoretical study of the octafluorocyclooctatetraene metal carbonyl complexes (C8F8)M(CO) n (n = 4, 3, 2, 1 for M = Ti, V, Cr, Mn, and Fe; n = 3, 2, 1 for M = Co, Ni) for comparison with their hydrogen analogues (C8H8)M(CO) n . In most such systems, the substitution of fluorine for hydrogen leads to relatively small changes in the preferred structures. However, for the iron carbonyl derivatives (C8X8)Fe(CO)3 (X = H, F), the difference observed experimentally has been confirmed by theory with (η3,1-C8F8)Fe(CO)3 and (η4-C8H8)Fe(CO)3 being the lowest energy structures by 4 and 14 kcal/mol, respectively. The ligand exchange reactions C8H8 + (C8F8)M(CO) n  → C8F8 + (C8H8)M(CO) n are predicted to be exothermic for almost all of the systems considered, with the (η3,1-C8X8)Fe(CO)3 system being the main exception. This suggests that the C8F8 ligand generally bonds more weakly to transition metals than the C8H8 ligand in accord with the electron-withdrawing effect of the ligand fluorine atoms.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号