首页 | 本学科首页   官方微博 | 高级检索  
     检索      

分散体系中任意形状的胶粒模型与相互作用能——Ⅰ. 相同的球颗粒
引用本文:王好平,金军,张曼霞.分散体系中任意形状的胶粒模型与相互作用能——Ⅰ. 相同的球颗粒[J].物理化学学报,1988,4(6):587-592.
作者姓名:王好平  金军  张曼霞
作者单位:Fushun Petroleum institute;Petroleum Exploration Bureau Liao He
摘    要:本文提出了一种计算任意形状胶粒相互作用的新方法。把粒胶做为一个凸面体, 做出它的支持平面, 当假定两凸面体的支持平面之间的排斥能可以由经典DLVO理论计算时, 令一凸面体(或它的相似体)沿另一凸面体(或它的相似体)转动, 那么, 两凸面体胶粒之间的排斥能, 就是支持平面之间的排斥能沿凸面体(或它的相似体)的表面积分。计算结果表明, 这种方法十分简便, 又有足够高的精确度。

收稿时间:1987-04-30
修稿时间:1987-11-13

INTERACTION AND MODEL OF ANY SHAPE PARTICLES IN COLLOID DISPERSION SYSTEM Ⅰ. IDENTICAL SPHERICAL PARTICLES
Wang Haoping,
Jin Jun,Zhang Manxia.INTERACTION AND MODEL OF ANY SHAPE PARTICLES IN COLLOID DISPERSION SYSTEM Ⅰ. IDENTICAL SPHERICAL PARTICLES[J].Acta Physico-Chimica Sinica,1988,4(6):587-592.
Authors:Wang Haoping  
Jin Jun
  Zhang Manxia
Institution:Fushun Petroleum institute;Petroleum Exploration Bureau Liao He
Abstract:This paper present a new method which diseribes colloidal particles model and calculation of any shape colloidal particles interaction enrgy in dispersed system. we choose a coordinate origin inside a convex body which represented a colloidal particle, take coordinates of direction θ and (φ)(0≤θ≤π, 0≤(φ)≤2π).For any direction (θ,(φ)), there is one and only one plane which is in cotact with the convex body and whose normal from the origin is in the direction (θ,(φ)). This plane is named the supporting plane in the direction (θ,φ). This plane is named the supporting plane in the direction (θ,φ). When a convex body A (or whose parallel body) moves around convex body B (or whose parallel body), assume interaction energy between two supporting planes of A and B can calculate from the DLVO theory, then interaction free energy of two any shape convex bodies is equal t surface inegral of interaction energy of the supporting planes over the whole surface of the convex body (or whose parallel body). A simple formula of interaction free energy of two identical spherical colloidal particles at constant surface potential has obained, namely,V_(WJZ)=V_D·(1-(κη+α_1)/(β_1κa))where V_(wjz) is our result, V_D is result of Derjaguin method, κ is Debye-Hükel parameter, a is radius of particle and ρ is the shortest distance between two identical spheres, α_1 and β_1 are a complex function of κρ. The α_1 and β_1 can determinate by way of power series method. we calculate interaction energy of two identical spherical particles use of values of α_1 and βin Table 2. Comparison of present result with those of ML, OCHW and computer result, when κa>10 it is better than result of ML, commensurates with result of OCHW.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号