首页 | 本学科首页   官方微博 | 高级检索  
     


Photodissociation dynamics of IBr(-)(CO(2))(n), n<15
Authors:Sanford Todd  Han Sang-Yun  Thompson Matthew A  Parson Robert  Lineberger W Carl
Affiliation:JILA and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA.
Abstract:We report the ionic photoproducts produced following photoexcitation of mass selected IBr(-)(CO(2))(n), n=0-14, cluster ions at 790 and 355 nm. These wavelengths provide single state excitation to two dissociative states, corresponding to the A(') (2)Pi(1/2) and B 2 (2)Sigma(1/2) (+) states of the IBr(-) chromophore. Excitation of these states in IBr(-) leads to production of I(-)+Br and Br(-)+I( *), respectively. Potential energy curves for the six lowest electronic states of IBr(-) are calculated, together with structures for IBr(-)(CO(2))(n), n=1-14. Translational energy release measurements on photodissociated IBr(-) determine the I-Br(-) bond strength to be 1.10+/-0.04 eV; related measurements characterize the A(') (2)Pi(1/2)<--X (2)Sigma(1/2) (+) absorption band. Photodissociation product distributions are measured as a function of cluster size following excitation to the A(') (2)Pi(1/2) and B 2 (2)Sigma(1/2) (+) states. The solvent is shown to drive processes such as spin-orbit relaxation, charge transfer, recombination, and vibrational relaxation on the ground electronic state. Following excitation to the A(') (2)Pi(1/2) electronic state, IBr(-)(CO(2))(n) exhibits size-dependent cage fractions remarkably similar to those observed for I(2) (-)(CO(2))(n). In contrast, excitation to the B 2 (2)Sigma(1/2) (+) state shows extensive trapping in excited states that dominates the recombination behavior for all cluster sizes we investigated. Finally, a pump-probe experiment on IBr(-)(CO(2))(8) determines the time required for recombination on the ground state following excitation to the A(') state. While the photofragmentation experiments establish 100% recombination in the ground electronic state for this and larger IBr(-) cluster ions, the time required for recombination is found to be approximately 5 ns, some three orders of magnitude longer than observed for the analogous I(2) (-) cluster ion. Comparisons are made with similar experiments carried out on I(2) (-)(CO(2))(n) and ICl(-)(CO(2))(n) cluster ions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号