首页 | 本学科首页   官方微博 | 高级检索  
     


Interpretation of conservative forces from Stokesian dynamic simulations of interfacial and confined colloids
Authors:Anekal Samartha G  Bevan Michael A
Affiliation:Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, USA.
Abstract:This paper presents Stokesian dynamics simulations of experiments involving one or two charged colloids near either a single charged wall or confined between parallel charged walls. Equilibrium particle-particle and particle-wall interactions are interpreted from dynamic particle trajectories in simulations involving (1) a single particle levitated above a wall, (2) two particles below a wall, and (3) two particles confined between two parallel walls. By specifying only repulsive electrostatic Derjaguin-Landau-Verwey-Overbeek (DLVO) potentials and including multibody hydrodynamics, we successfully recover expected potentials in some cases, while anomalous attraction is observed in other cases. Attraction inferred in the latter simulations displays quantitative agreement with literature measurements when particle dynamics are interpreted using reported analyses. Because anomalous attraction is reproduced in simulations using only electrostatic repulsive DLVO potentials, our results reveal the one-dimensional analyses to be invalid for configurations that are inherently multidimensional via multibody hydrodynamics. Parameters related to experimental sampling of particle dynamics are also found to be critical for obtaining accurate potentials. We explain the anomalous attraction in each experiment using effective potentials, which can be employed in an a priori fashion to assist the confident design of future experiments involving interfacial and confined colloids. Ultimately, our findings reveal the importance of dimensionality and multibody hydrodynamics for understanding nonequilibrium dynamics of colloids near surfaces.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号