首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of lateral diffusion on morphology and dynamics of a microscopic lattice-gas model of pulsed electrodeposition
Authors:Frank Stefan  Roberts Daniel E  Rikvold Per Arne
Institution:Department of Physics, Center for Materials Research and Technology, and School of Computational Science, Florida State University, Tallahassee, Florida 32306-4350, USA.
Abstract:The influence of nearest-neighbor diffusion on the decay of a metastable low-coverage phase (monolayer adsorption) in a square lattice-gas model of electrochemical metal deposition is investigated by kinetic Monte Carlo simulations. The phase-transformation dynamics are compared to the well-established Kolmogorov-Johnson-Mehl-Avrami theory. The phase transformation is accelerated by diffusion, but remains in accord with the theory for continuous nucleation up to moderate diffusion rates. At very high diffusion rates the phase-transformation kinetic shows a crossover to instantaneous nucleation. Then, the probability of medium-sized clusters is reduced in favor of large clusters. Upon reversal of the supersaturation, the adsorbate desorbs, but large clusters still tend to grow during the initial stages of desorption. Calculation of the free energy of subcritical clusters by enumeration of lattice animals yields a quasiequilibrium distribution which is in reasonable agreement with the simulation results. This is an improvement relative to classical droplet theory, which fails to describe the distributions, since the macroscopic surface tension is a bad approximation for small clusters.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号