首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Inexact-Restoration Algorithm for Constrained Optimization1
Authors:J M Martínez  E A Pilotta
Institution:(1) Department of Applied Mathematics, Institute of Mathematics, University of Campinas, Campinas, SP, Brazil;(2) Department of Applied Mathematics, Institute of Mathematics, University of Campinas, SP, Brazil
Abstract:We introduce a new model algorithm for solving nonlinear programming problems. No slack variables are introduced for dealing with inequality constraints. Each iteration of the method proceeds in two phases. In the first phase, feasibility of the current iterate is improved; in second phase, the objective function value is reduced in an approximate feasible set. The point that results from the second phase is compared with the current point using a nonsmooth merit function that combines feasibility and optimality. This merit function includes a penalty parameter that changes between consecutive iterations. A suitable updating procedure for this penalty parameter is included by means of which it can be increased or decreased along consecutive iterations. The conditions for feasibility improvement at the first phase and for optimality improvement at the second phase are mild, and large-scale implementation of the resulting method is possible. We prove that, under suitable conditions, which do not include regularity or existence of second derivatives, all the limit points of an infinite sequence generated by the algorithm are feasible, and that a suitable optimality measure can be made as small as desired. The algorithm is implemented and tested against the LANCELOT algorithm using a set of hard-spheres problems.
Keywords:Nonlinear programming  trust regions  feasible methods  global convergence  numerical experiments
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号