首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A direct method for the general solution of a system of linear equations
Authors:H Y Huang
Institution:(1) Rice University, Houston, Texas;(2) Present address: Exxon Production Research Company, Houston, Texas
Abstract:A computationally stable method for the general solution of a system of linear equations is given. The system isA Tx–B=0, where then-vectorx is unknown and then×q matrixA and theq-vectorB are known. It is assumed that the matrixA T and the augmented matrix A T,B] are of the same rankm, wheremlen, so that the system is consistent and solvable. Whenm<n, the method yields the minimum modulus solutionx m and a symmetricn ×n matrixH m of ranknm, so thatx=x m+H my satisfies the system for ally, ann-vector. Whenm=n, the matrixH m reduces to zero andx m becomes the unique solution of the system.The method is also suitable for the solution of a determined system ofn linear equations. When then×n coefficient matrix is ill-conditioned, the method can produce a good solution, while the commonly used elimination method fails.This research was supported by the National Science Foundation, Grant No. GP-41158.
Keywords:Mathematical programming  conjugate-gradient methods  variable-metric methods  linear equations  numerical methods  computing methods
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号