首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydrogen Promoted Decomposition of Ammonium Dinitramide: an ab initio Molecular Dynamics Study
Authors:Ling-hua Tan  Jian-hua Xu  Lei Shi  Xu-ran Xu  Gui-xiang Wang  Wei Jiang
Institution:a.National Special Superfine Power Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094, Chinab.School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract:Thermal decomposition of a famous high oxidizer ammonium dinitramide (ADN) under high temperatures (2000 and 3000 K) was studied by using the ab initio molecular dynamics method.Two different temperature-dependent initial decomposition mechanisms were observed in the unimolecular decomposition of ADN, which were the intramolecular hydrogen transfer and N-NO2 cleavage in N (NO2)-.They were competitive at 2000 K, whereas the former one was predominant at 3000 K.As for the multimolecular decomposition of ADN, four different initial decomposition reactions that were also temperature-dependent were observed.Apart from the aforementioned mechanisms, another two new reactions were the intermolecular hydrogen transfer and direct N-H cleavage in NH4+.At the temperature of 2000 K, the N-NO2 cleavage competed with the rest three hydrogen-related decomposition reactions, while the direct N-H cleavage in NH4+ was predominant at 3000 K.After the initial decomposition, it was found that the temperature increase could facilitate the decomposition of ADN, and would not change the key decomposition events.ADN decomposed into small molecules by hydrogen-promoted simple, fast and direct chemical bonds cleavage without forming any large intermediates that may impede the decomposition.The main decomposition products at 2000 and 3000 K were the same, which were NH3, NO2, NO, N2O, N2, H2O, and HNO2.
Keywords:Ammonium dinitramide  High temeprature  ab initio molecular dynamics  Hydrogen transfer
点击此处可从《化学物理学报(中文版)》浏览原始摘要信息
点击此处可从《化学物理学报(中文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号