首页 | 本学科首页   官方微博 | 高级检索  
     


DNA oxidation in anionic reverse micelles: ruthenium-mediated damage at Guanine in single- and double-stranded DNA
Authors:Evans Sarah E  Mon Soe  Singh Robinder  Ryzhkov Lev R  Szalai Veronika A
Affiliation:Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA.
Abstract:One-electron guanine oxidation in DNA has been investigated in anionic reverse micelles (RMs). A photochemical method for generating Ru3+ from the ruthenium polypyridyl complex tris(2-2'-bipyridine)ruthenium(II) chloride ([Ru(bpy)3]Cl2) is combined with high-resolution polyacrylamide gel electrophoresis (PAGE) to quantify piperidine-labile guanine oxidation products. As characterized by emission spectroscopy of Ru(bpy)3(2+), the addition of DNA to RMs containing Ru(bpy)3(2+) does not perturb the environment of Ru(bpy)3(2+). The steady-state quenching efficiency of Ru(bpy)3(2+) with K3[Fe(CN)6] in buffer solution is approximately 2-fold higher than that observed in RMs. Consistent with the difference in quenching efficiency in the two media, a 1.5-fold higher yield of piperidine-labile damage products as monitored by PAGE is observed for duplex oligonucleotide in buffer vs RMs. In contrast, a 13-fold difference in the yield of PAGE-detected G oxidation products is observed when single-stranded DNA is the substrate. Circular dichroism spectra showed that single-stranded DNA undergoes a structural change in anionic RMs. This structural change is potentially due to cation-mediated adsorption of the DNA phosphates on the anionic headgroups of the RMs, leading to protection of the guanine from oxidatively generated damage.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号