首页 | 本学科首页   官方微博 | 高级检索  
     


Turbulence kinetic energy budget in bubbly flows in a vertical duct
Authors:Shigeo Hosokawa  Takashi Suzuki  Akio Tomiyama
Affiliation:(1) Department of Mechanical Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
Abstract:Understanding turbulence kinetic energy (TKE) budget in gas–liquid two-phase bubbly flows is indispensable to develop and improve turbulence models for the bubbly flows. In this study, a molecular tagging velocimetry based on photobleaching reaction was applied to turbulent bubbly flows with sub-millimeter bubbles in a vertical square duct to examine the applicability of the k–ε models to the bubbly flows. Effects of bubbles on TKE budget are discussed and a priori tests of the standard and low Reynolds number k–ε models are carried out to examine the applicability of these models to the bubbly flows. The conclusions obtained are as follows: (1) The photobleaching molecular tagging velocimetry is of use for validating turbulence models. (2) The bubbles increase the liquid velocity gradient in the near wall region, and therefore, enhance the production and dissipation rates of TKE. (3) The k–ε models can reasonably evaluate the production rate of TKE in the bubbly flows. (4) The modulations of diffusion due to the bubbles have different characteristics from the diffusion enhancement due to shear-induced turbulence. Hence, the k–ε models fail in evaluating the diffusion rate in the near wall region in the bubbly flows. (5) The k–ε models represent the trends of the production, dissipation, and diffusion rates of ε in the bubbly flow, although more accurate experimental data are required for quantitative validation of the ε equation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号