首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of (60)Co gamma radiation on thylakoid membrane functions in Anacystis nidulans
Authors:Agarwal Rachna  Rane S S  Sainis Jayashree Krishna
Institution:

aMolecular Biology Division, Bhabha Atomic Research Center, Mumbai 400 085, India

bControl and Instrumentation Division, Bhabha Atomic Research Center, Mumbai 400 085, India

Abstract:In photosynthetic organisms oxidative stress is known to result in photoinactivation of photosynthetic machinery. We investigated effects of 60Co γ radiation, which generates oxidative stress, on thylakoid structure and function in cyanobacteria. Cells of unicellular, non-nitrogen fixing cyanobacterium Anacystis nidulans (Synechococcus sp.) showed D10 value of 257 Gy of 60Co γ radiation. When measured immediately after exposure, cells irradiated with 1500 Gy (lethal dose) of 60Co γ radiation did not show any differences in photosynthetic functions such as CO2 fixation, O2 evolution and partial reactions of photosynthetic electron transport in comparison to unirradiated cells. Incubation of irradiated cells for 24 h in light or dark resulted in decline in photosynthesis. The decline in photosynthesis was higher in the cells incubated in light as compared to the cells incubated in dark. Among the partial reactions of electron transport, only PSII activity declined drastically after incubation of irradiated samples. This was also supported by the analysis of membrane functions using thermoluminescence. Exposure of cyanobacteria to high doses of 60Co γ radiation did not affect the thylakoid membrane ultrastructure immediately after exposure as shown by electron microscopy. The level of reactive oxygen species (ROS) in irradiated cells was 20 times higher as compared to control. In irradiated cells de novo protein synthesis was reduced considerably immediately after irradiation. Treatment of cells with tetracycline also affected photosynthesis as in irradiated cells. The results showed that photoinhibition of photosynthetic apparatus after incubation of irradiated cells was probably augmented due to reduced protein synthesis. Active photosynthesis is known to require uninterrupted replenishment of some of the proteins involved in electron transport chain. The defective thylakoid membrane biogenesis may be leading to photosynthetic decline post-irradiation.
Keywords:Cyanobacteria  60Co γ radiation  Lethal dose  Photosynthesis  Thylakoid membrane
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号