首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Micromechanism of Cu and Fe alloying process on the martensitic phase transformation of NiTi-based alloys: First-principles calculation
Authors:J Y Yin  G F Li  Y L Si  G Ying  P Peng
Institution:1.National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology,Nanchang Hangkong University,Jiangxi,P. R. China;2.School of Materials Science and Engineering,Hunan,P. R. China
Abstract:Using first-principles pseudo-potential plane wave method, the formation enthalpy ΔH, binding energy ΔE, elastic constants, and electronic structure were calculated and analyzed carefully for NiTiX (X = Cu, Fe) shape memory alloy. The results show that the Cu or Fe element prefers to occupy the Ni site in the NiTi matrix phase respectively. Compared with the NiTi matrix phase, the ΔH, ΔE, c 44 and c′ of NiTi (Cu) are similar to each other. However, the structural stability of the NiTi phase is improved obviously by the Fe alloying process. Simultaneously, the shear modulus c 44 and c′ of NiTi (Fe) are larger than those of the NiTi matrix phase. Furthermore, Milliken population results indicate that Q Cu–Ti is smaller than Q Ni–Ti after the Cu alloying process, but Q Fe–Ti is larger than Q Ni–Ti. The electron density difference shows that some covalent bonding exists between Fe and Ti elements. Based on the upward analysis, the difference in the phase stability and elastic constants of NiTiX (X = Cu, Fe) is the substantial mechanism for the different M s of NiTiX (X = Cu, Fe) although Cu or Fe substitutes for the same atom Ni elements in the NiTi matrix phase.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号