首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reactivity of collisionally activated dichlorocarbene dications studied by tandem mass spectrometry
Authors:Bernard Leyh  Dimitri Hautot
Institution:1. Département de Chimie Générale et de Chimie Physique, Institut de Chimie, Bātiment B6, Université de Liège, Liège 1, B. 4000, Sart-Tilman, Belgium
Abstract:The dissociation mechanisms of dichlorocarbene dications following collisional activation have been investigated via tandem mass spectrometric techniques and semi-empirical calculations. Three channels appear to be significant: {fx1019-1} The second channel becomes dominant at high internal energy. Production of ground state fragments (channel 1) involves a transition driven by spin—orbit coupling from the CCl 2 2+ $CCl_2^2 \tilde X^1 \Sigma _g^ + $ state to the CCl 2 2? ā3Σ u ? state en route to the fragments. The dissociation barrier for the production of ground state fragments from the ground electronic state of CCl 2 2+ via the spin—orbit-induced transition is equal to 420 kJ mol?1. The dissociation pathway that corresponds to channel 3 includes a first isomerization step from the linear Cl-C-Cl2+ structure to a bent Cl-Cl-C2+ connectivity. The calculated isomerization barrier amounts to 550 kJ mol?1. The calculated reverse activation barriers are compatible with the measured kinetic energy released on the fragments.
Keywords:
本文献已被 ScienceDirect SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号