首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Oscillations and Convergence in an Almost Periodic Competition System
Authors:K Gopalsamy  Xue-Zhong He
Institution:1. Department of Mathematics and Statistics, Flinders University, GPO Box 2100, Adelaide SA 5001, Australia
Abstract:Sufficient conditions are derived for the existence of a globally attractive almost periodic solution of a competition system modelled by the nonautonomous Lotka–Volterra delay differential equations $$\begin{gathered} \frac{{{\text{d}}N_1 (t)}}{{{\text{d}}t}} = N_1 (t)\left {r_1 (t) - a_{11} (t)N_1 (t - \tau (t)) - a_{12} (t)N_2 (t - \tau (t))} \right], \hfill \\ \frac{{{\text{d}}N_2 (t)}}{{{\text{d}}t}} = N_2 (t)\left {r_2 (t) - a_{21} (t)N_1 (t - \tau (t)) - a_{22} (t)N_2 (t - \tau (t))} \right], \hfill \\ \end{gathered} $$ in which $ \tau ,r_i ,a_{ij} (i,j = 1,2) $ are continuous positive almost periodic functions; conditions are also obtained for all positive solutions of the above system to 'oscillate' about the unique almost periodic solution. Some ecobiological consequences of the convergence to almost periodicity and delay induced oscillations are briefly discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号