首页 | 本学科首页   官方微博 | 高级检索  
     


Fabrication of functionally gradient nanocomposite coatings by plasma electrolytic oxidation based on variable duty cycle
Authors:M. AliofkhazraeiA. Sabour Rouhaghdam
Affiliation:Department of Materials Science, Faculty of Engineering, Tarbiat Modares University, P.O. Box: 14115-143, Tehran, Iran
Abstract:Plasma electrolytic oxidation (PEO) was applied on the surface of commercially pure titanium substrates in a mixed aluminate-phosphate electrolyte in the presence of silicon nitride nanoparticles as suspension in the electrolyte in order to fabricate nanocomposite coatings. Pulsed current was applied based on variable duty cycle in order to synthesize functionally gradient coatings (FGC). Different rates of variable duty cycle (3, 1.5 and 1%/min), applied current densities (0.06-0.14 A/cm2) and concentrations of nanoparticles in the electrolyte (2, 4, 6, 8 and 10 g l−1) were investigated. The nanopowder and coated samples were analyzed by atomic force microscope, scanning electron microscope and transmission electron microscope. The influence of different rates of variable duty cycle (or treatment times) on the growth rate of nanocomposite coatings and their microhardness values was investigated. The experimental results revealed that the content of Si3N4 nanoparticulates in the layer increases with the increase of its concentration in the plasma electrolysis bath. Nanocomposite coatings fabricated with lower rate of variable duty cycle have higher microhardness with smoother microhardness profile.
Keywords:Plasma electrolytic oxidation   Functionally gradient coatings   Nanocomposite   Pulse current
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号