首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Steady‐state electrophoresis of RNA against a gradient of cationic charges in a polyacrylamide matrix
Authors:Gleb Zilberstein  Ilya Shlar  Emmanuil Baskin  Leonid Korol  Pier Giorgio Righetti  Shmuel Bukshpan
Institution:1. Cleardirection Ltd., Rehovot, Israel;2. Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milano, Italy
Abstract:A novel method for separation of RNA fragments is reported here, based on migrating the polyanionic RNA fragments in a polycationic polyacrylamide gel, made by incorporating positively charged monomers (the Immobilines used for creating immobilized pH gradients) into the neutral polyacrylamide backbone. Separations are typically performed in a 0–10 mM, pK 10.3 Immobiline gradient under denaturing conditions (6 M urea). In the 100–1000 bp length, it is shown that separations of RNA are optimal and very sharp bands can be obtained, in comparison with conventional electrophoresis, due to the “focusing” effect originated by the charge balancing between the positively charged gel matrix and the negatively charged RNA species. Excellent separations are also obtained from micro‐RNAs, single‐stranded RNA molecules of 21–23 nucleotides in length, which appear to regulate gene expression in animal and plant tissues. As a third example, 2‐D runs in control and polycationic gels are shown. Under native conditions, RNAs are not aligned in a diagonal, suggesting that molecular shape has a strong influence on the interaction between RNA and the charged gel matrix. Thus, 2‐D runs in cationic matrices might be exploited for structural studies of RNA molecules.
Keywords:Micro‐RNA  Polycationic matrices  RNA separations
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号