首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Periods in missing lengths of rainbow cycles
Authors:Petr Vojtěchovský
Institution:Department of Mathematics, University of Denver, 2360 S Gaylord St, Denver, Colorado 80208
Abstract:A cycle in an edge‐colored graph is said to be rainbow if no two of its edges have the same color. For a complete, infinite, edge‐colored graph G, define equation image Then ??(G) is a monoid with respect to the operation n°m=n+ m?2, and thus there is a least positive integer π(G), the period of ??(G), such that ??(G) contains the arithmetic progression {N+ kπ(G)|k?0} for some sufficiently large N. Given that n∈??(G), what can be said about π(G)? Alexeev showed that π(G)=1 when n?3 is odd, and conjectured that π(G) always divides 4. We prove Alexeev's conjecture: Let p(n)=1 when n is odd, p(n)=2 when n is divisible by four, and p(n)=4 otherwise. If 2<n∈??(G) then π(G) is a divisor of p(n). Moreover, ??(G) contains the arithmetic progression {N+ kp(n)|k?0} for some N=O(n2). The key observations are: If 2<n=2k∈??(G) then 3n?8∈??(G). If 16≠n=4k∈??(G) then 3n?10∈??(G). The main result cannot be improved since for every k>0 there are G, H such that 4k∈??(G), π(G)=2, and 4k+ 2∈??(H), π(H)=4. © 2009 Wiley Periodicals, Inc. J Graph Theory
Keywords:rainbow cycle  length of rainbow cycle  complete graph  edge‐colored graph  arithmetic progression  Gallai graph
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号