首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Phase boundaries as agents of structural change in macromolecules
Authors:Ritwik Raj  Prashant K Purohit
Institution:Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
Abstract:We model long rod-like molecules, such as DNA and coiled-coil proteins, as one-dimensional continua with a multi-well stored energy function. These molecules suffer a structural change in response to large forces, characterized by highly typical force-extension behavior. We assume that the structural change proceeds via a moving folded/unfolded interface, or phase boundary, that represents a jump in strain and is governed by the Abeyaratne–Knowles theory of phase transitions. We solve the governing equations using a finite difference method with moving nodes to represent phase boundaries. Our model can reproduce the experimental observations on the overstretching transition in DNA and coiled-coils and makes predictions for the speed at which the interface moves. We employ different types of kinetic relations to describe the mobility of the interface and show that this leads to different classes of experimentally observed force-extension curves. We make connections with several existing theories, experiments and simulation studies, thus demonstrating the effectiveness of the phase transitions-based approach in a biological setting.
Keywords:Phase transformation  Biological material  Rod-like molecules  Finite differences  Polymeric material
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号