首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Characterization of physical structure of silica nanoparticles encapsulated in polymeric structure of polyamide films
Authors:Singh Puyam S  Aswal Vinod K
Institution:aRO Membrane Division, Central Salt & Marine Chemicals Research Institute (C.S.I.R.), G.B. Marg, Bhavnagar 364002, India;bSolid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
Abstract:Polyamide nanocomposite films were prepared from nanometer sized silica particles and trimesoyl chloride–m-phenylene diamine based polyamides. The type of silica nanoparticles used is commercial LUDOX® HS-40 and the particle size characterized by the radius of gyration (Rg) is about 66 Å. The immediately prepared films were easily broken into particles to form colloidal-like dilute suspension of the silica–polyamide composite particles in D2O–H2O solutions for SANS measurements, that in this dilute system SANS data the complication of scattering data from the interacting particles is minimized. At about 60% D2O of the sample solution, the silica is contrasted out, therefore the SANS profiles are predominantly from the organic polyamide scattering. The SANS profile of the sample solutions measured at 90% D2O clearly indicates scattering from both silica and polymer. The scattering heterogeneities for two-phase system were evident from the validity of the Debye–Bueche expression in case of the nanocomposite with high silica loading. At limited silica loading of the nanocomposite, interaction between the silica and polymer chains forming core–shell morphology was observed. The transport properties of the membranes made from the nanocomposite films were measured on a batch type test kit with an aqueous solution of 500 ppm dioxane concentration at pressures ranging from 50 to 200 psig, and correlated to their composite structure.
Keywords:Silica nanoparticles  Polyamide film  Nanocomposite membrane  SANS
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号