首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamically corrected transition state theory calculations of self-diffusion in anisotropic nanoporous materials
Authors:Dubbeldam D  Beerdsen E  Calero S  Smit B
Institution:Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands. dubbelda@science.uva.nl
Abstract:We apply the dynamically corrected transition state theory to confinements with complex structures. This method is able to compute self-diffusion coefficients for adsorbate-adsorbent systems far beyond the time scales accessible to molecular dynamics. Two example cage/window-type confinements are examined: ethane in ERI- and CHA-type zeolites. In ERI-type zeolites, each hop in the z direction is preceded by a hop in xy direction and diffusion is anisotropic. The lattice for CHA-type zeolite is a rhombohedral Bravais lattice, and diffusion can be considered isotropic in practice. The anisotropic behavior of ERI-type cages reverses with loading, i.e., at low loading the diffusion in the z direction is two times faster than in the xy direction, while for higher loadings this changes to a z diffusivity that is more than two times slower. At low loading the diffusion is impeded by the eight-ring windows, i.e., the exits out of the cage to the next, but at higher loadings the barrier is formed by the center of the cages.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号