首页 | 本学科首页   官方微博 | 高级检索  
     

基于数据挖掘技术的银行客户定期存款认购模型研究
作者单位:;1.黄河科技学院信息工程学院;2.战略支援部队信息工程大学基础部;3.郑州大学数学系
摘    要:数据挖掘技术能有效地挖掘出潜在的银行客户,能够大大提高银行的竞争力.介绍了数据挖掘技术中常用的三种模型:逻辑回归模型、BP神经网络模型和决策树模型,同时构造了一种新模型——逻辑回归与BP神经网络混合的模型,然后分别采用这四种模型对可能影响银行客户是否认购定期存款的影响因素进行数据挖掘分析,分别构建了基于逻辑回归模型、BP神经网络模型、逻辑回归与BP神经网络的新模型、决策树模型的银行客户定期存款认购的四种模型,同时利用R语言分别对这四种模型进行分析,分别用ROC曲线的AUC值和正确率比较这四种模型的功效强弱以及稳定性,研究结果表明,给出的新模型——逻辑回归与BP神经网络的新模型的预测效果更好,训练集和测试集预测的准确率分别为0.936和0.931,训练集和测试集ROC曲线的AUC值分别为0.998和0.987,这可以大大缩小银行推送认购定期存款的客户范围,有效地挖掘出潜在的银行客户,可以大大提高银行的效率.

关 键 词:逻辑回归  BP神经网络  决策树  新模型  正确率  ROC曲线

A Research on Model of Statistical Decision on Research for Bank's Long-term Deposit Subscription Based on Data mining Algorithm
Abstract:
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号