首页 | 本学科首页   官方微博 | 高级检索  
     


Modulation of a Molecular π‐Electron System in a Purely Organic Conductor that Shows Hydrogen‐Bond‐Dynamics‐Based Switching of Conductivity and Magnetism
Authors:Dr. Akira Ueda  Akari Hatakeyama  Dr. Masaya Enomoto  Prof. Dr. Reiji Kumai  Prof. Dr. Youichi Murakami  Prof. Dr. Hatsumi Mori
Affiliation:1. The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277‐8581 (Japan);2. Department of Chemistry, Faculty of Science Division I, Tokyo University of Science, Shinjuku‐ku, Tokyo 162‐8601 (Japan);3. Condensed Matter Research Center (CMRC) and Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305‐0801 (Japan)
Abstract:New important aspects of the hydrogen‐bond (H‐bond)‐dynamics‐based switching of electrical conductivity and magnetism in an H‐bonded, purely organic conductor crystal have been discovered by modulating its tetrathiafulvalene (TTF)‐based molecular π‐electron system by means of partial sulfur/selenium substitution. The prepared selenium analogue also showed a similar type of phase transition, induced by H‐bonded deuterium transfer followed by electron transfer between the H‐bonded TTF skeletons, and the resulting switching of the physical properties; however, subtle but critical differences due to sulfur/selenium substitution were detected in the electronic structure, phase transition nature, and switching function. A molecular‐level discussion based on the crystal structures shows that this chemical modification of the TTF skeleton influences not only its own π‐electronic structure and π–π interactions within the conducting layer, but also the H‐bond dynamics between the TTF π skeletons in the neighboring layers, which enables modulation of the interplay between the H‐bond and π electrons to cause such differences.
Keywords:conducting materials  electron transfer  hydrogen bonds  hydrogen transfer  phase transitions
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号