首页 | 本学科首页   官方微博 | 高级检索  
     


Structure of sodiated octa-glycine: IRMPD spectroscopy and molecular modeling
Authors:David Semrouni  O. Petru Balaj  Florent Calvo  Catarina F. Correia  Carine Clavaguéra  Gilles Ohanessian
Affiliation:(1) FOM Institute for Plasma Physics “Rijnhuizen”, Edisonbaan 14, 3439 MN Nieuwegein, The Netherlands;(2) Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611-7200, USA;(3) Van‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands;(4) Present address: Sandia/California, 7011 East Avenue, Livermore, CA 94551-0969, USA;
Abstract:The structure of the sodiated peptide GGGGGGGG-Na+ or G8-Na+ was investigated by infrared multiple photon dissociation (IRMPD) spectroscopy and a combination of theoretical methods. IRMPD was carried out in both the fingerprint and N—H/O—H stretching regions. Modeling used the polarizable force field AMOEBA in conjunction with the replica-exchange molecular dynamics (REMD) method, allowing an efficient exploration of the potential energy surface. Geometries and energetics were further refined at B3LYP-D and MP2 quantum chemical levels. The IRMPD spectra indicate that there is no free C-terminus OH and that several N—Hs are free of hydrogen bonding, while several others are bound, however not very strongly. The structure must then be either of the charge solvation (CS) type with a hydrogen-bound acidic OH, or a salt bridge (SB). Extensive REMD searches generated several low-energy structures of both types. The most stable structures of each type are computed to be very close in energy. The computed energy barrier separating these structures is small enough that G8-Na+ is likely fluxional with easy proton transfer between the two peptide termini. There is, however, good agreement between experiment and computations in the entire spectral range for the CS isomer only, which thus appears to be the most likely structure of G8-Na+ at room temperature.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号