首页 | 本学科首页   官方微博 | 高级检索  
     


A nanocomposite consisting of MIL-101(Cr) and functionalized magnetite nanoparticles for extraction and determination of selenium(IV) and selenium(VI)
Authors:Hossein?Kalantari,Mahboobeh?Manoochehri  author-information"  >  author-information__contact u-icon-before"  >  mailto:dr.manoochehri@yahoo.com"   title="  dr.manoochehri@yahoo.com"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:1.Department of Chemistry, Central Tehran Branch,Islamic Azad University,Tehran,Iran
Abstract:A metal-organic framework nanocomposite was synthesized and applied to speciation analysis of Se(IV) and Se(VI). The sorbent is composed of MIL-101(Cr) and magnetite nanoparticles modified with dithiocarbamate. It is capably of selectively extracting Se(IV) at pH?=?1.85, while Se(VI) remains in solution. The total amount of selenium can then be determined by reducing Se(VI) to Se(IV) and also extracting it. The extraction parameters were optimized by employing design-of-experiments methodology. Selenium was then quantified by electrothermal AAS. Figures of merit include (a) a 10 ng·L?1 limit of detection, (b) a linear response in the 30 ng·L?1 to 10 μg·L?1 concentration range, and (a) a relative standard deviation of <11.5% for Se(IV). The method was validated by analyzing certified reference materials (water and tomato leaves). It was also applied to the speciation analysis of Se(IV) and Se(VI) in (spiked) water samples and of total selenium in agricultural samples.
Graphical abstract Schematic of the synthesis of a metal-organic framework nanocomposite for speciation analysis of Se(IV) and Se(VI). The sorbent is composed of MIL-101(Cr) and magnetite nanoparticles modified with dithiocarbamate. Selenium can be quantified by electrothermal AAS with a 10 ng L?1 detection limit.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号