首页 | 本学科首页   官方微博 | 高级检索  
     


Red-, blue-, or no-shift in hydrogen bonds: a unified explanation
Authors:Joseph Jorly  Jemmis Eluvathingal D
Affiliation:School of Chemistry, University of Hyderabad, Central University (P.O.), Hyderabad-500046, India.
Abstract:We provide a simple explanation for X-H bond contraction and the associated blue shift and decrease of intensity in IR spectrum of the so-called improper hydrogen bonds. This explanation organizes hydrogen bonds (HBs) with a seemingly random relationship between the X-H bond length (and IR frequency and its intensity) to its interaction energy. The factors which affect the X-H bond in all X-H...Y HBs can be divided into two parts: (a) The electron affinity of X causes a net gain of electron density at the X-H bond region in the presence of Y and encourages an X-H bond contraction. (b) The well understood attractive interaction between the positive H and electron rich Y forces an X-H bond elongation. For electron rich, highly polar X-H bonds (proper HB donors) the latter almost always dominates and results in X-H bond elongation, whereas for less polar, electron poor X-H bonds (pro-improper HB donors) the effect of the former is noticeable if Y is not a very strong HB acceptor. Although both the above factors increase with increasing HB acceptor ability of Y, the shortening effect dominates over a range of Ys for suitable pro-improper X-Hs resulting in a surprising trend of decreasing X-H bond length with increasing HB acceptor ability. The observed frequency and intensity variations follow naturally. The possibility of HBs which do not show any IR frequency change in the X-H stretching mode also directly follows from this explanation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号