首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structural and electronic effects on one-bond spin-spin coupling constants 1J(B-N), 1J(B-H), and 1J(B-F) for complexes of nitrogen bases with BH3 and its fluoro-substituted derivatives
Authors:Del Bene Janet E  Alkorta Ibon  Elguero José  Mó Otilia  Yáñez Manuel
Institution:Department of Chemistry, Youngstown State University, Youngstown, Ohio 44555, United States. jedelbene@ysu.edu
Abstract:Ab initio equation-of-motion coupled cluster (EOM-CCSD) one-bond spin-spin coupling constants (1)J(B-N), (1)J(B-H), and (1)J(B-F) have been evaluated for complexes X:BH(n)F(3-n) with X = N(2), NCH, NCLi, H(2)CNH, NF(3), and NH(3), for n = 0-3. These complexes can be classified as either covalent or van der Waals complexes, on the basis of their binding energies and B-N distances. (1)J(B-N) for covalent complexes varies significantly from -19 to +9 Hz, whereas (1)J(B-N) is less than 2 Hz for van der Waals complexes. An absolute value of (1)J(B-N) of 3 Hz or greater indicates that the complex is covalently bonded, but a small value of this coupling constant does not necessarily mean that it is a van der Waals complex, in view of the variation among these complexes found for (1)J(B-N) as a function of the B-N distance. Deformation of the boron acid upon complex formation and electron donation by the nitrogen base has opposing effects on both (1)J(B-H) and (1)J(B-F). These effects are relatively small in van der Waals complexes. In covalent complexes, electron donation has the dominant effect on (1)J(B-H), and on (1)J(B-F) in complexes with BH(2)F and BHF(2), but acid deformation has the dominant effect on (1)J(B-F) in complexes with BF(3). Values of both (1)J(B-H) and (1)J(B-F) reflect the van der Waals or covalent nature of the B-N bond.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号