Abstract: | Quantitative structure‐activity and structure‐property relationships of complex polycyclic benzenoid networks require expressions for the topological properties of these networks. Structure‐based topological indices of these networks enable prediction of chemical properties and the bioactivities of these compounds through quantitative structure‐activity and structure‐property relationships methods. We consider a number of infinite convex benzenoid networks that include polyacene, parallelogram, trapezium, triangular, bitrapezium, and circumcorone series benzenoid networks. For all such networks, we compute analytical expressions for both vertex‐degree and edge‐based topological indices such as edge‐Wiener, vertex‐edge Wiener, vertex‐Szeged, edge‐Szeged, edge‐vertex Szeged, total‐Szeged, Padmakar‐Ivan, Schultz, Gutman, Randić, generalized Randić, reciprocal Randić, reduced reciprocal Randić, first Zagreb, second Zagreb, reduced second Zagreb, hyper Zagreb, augmented Zagreb, atom‐bond connectivity, harmonic, sum‐connectivity, and geometric‐arithmetic indices. In addition we have obtained expressions for these topological indices for 3 types of parallelogram‐like polycyclic benzenoid networks. |