首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the modelling of anisotropic material behaviour in viscoplasticity
Institution:1. The University of Sheffield, Mechanical Engineering Department, Sheffield, S1 3JD, United Kingdom;2. Tata Steel Europe, Rolling Finishing & Measurement Department, United Kingdom
Abstract:A uniaxial viscoplastic deformation is motivated as a discrete sequence of stable and unstable equilibrium states and approximated by a smooth family of stable states of equilibrium depending on the history of the mechanical process. Three-dimensional crystal viscoplasticity starts from the assumption that inelastic shearings take place on slip systems, which are known from the particular geometric structure of the crystal. A constitutive model for the behaviour of a single crystal is developed, based on a free energy, which decomposes into an elastic and an inelastic part. The elastic part, the isothermal strain energy, depends on the elastic Green strain and allows for the initial anisotropy, known from the special type of the crystal lattice. Additionally, the strain energy function contains an orthogonal tensor-valued internal variable representing the orientation of the anisotropy axes. This orientation develops according to an evolution equation, which satisfies the postulate of full invariance in the sense that it is an observer-invariant relation. The inelastic part of the free energy is a quadratic function of the integrated shear rates and corresponding internal variables being equivalent to backstresses in order to consider kinematic hardening phenomena on the slip system level. The evolution equations for the shears, backstresses and crystallographic orientations are thermomechanically consistent in the sense that they are compatible with the entropy inequality. While the general theory applies to all types of lattices, specific test calculations refer to cubic symmetry (fcc) and small elastic strains. The simulations of simple tension and compression processes of a single crystal illustrates the development of the crystallographic axes according to the proposed evolution equation. In order to simulate the behaviour of a polycrystal the initial orientations of the anisotropy axes are assumed to be space-dependent but piecewise constant, where each region of a constant orientation corresponds to a grain. The results of the calculation show that the initially isotropic distribution of the orientation changes in a physically reasonable manner and that the intensity of this process-induced texture depends on the specific choice of the material constants.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号