首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A Spectroscopic Investigation of Donor‐Acceptor‐Substituted Heptalenes
Authors:Philipp Ott  Hans‐Jürgen Hansen
Abstract:It is shown that the heptalene‐4,5‐dicarboxylates 5 react with their Me group at C(1) with N,N‐dimethylformamide dimethyl acetal or other acetals of this type in N,N‐dimethylformamide (DMF) to give the corresponding 1‐(E)‐2‐(N,N‐dialkylamino)ethenyl]‐substituted heptalene‐4,5‐dicarboxylates 8a – 8e as well as 8k and 8i in good yields (Table 1). In a similar manner, the 1‐(E)‐2‐pyrrolidinoethenyl]‐substituted heptalene‐5‐carboxylates 8f – h were synthesized from the corresponding heptalene‐carboxylates 10 – 12 , carrying a CHO, CN, or (E)‐2‐(methoxycarbonyl)ethenyl group at C(4) (Table 1). All new heptalenes with the π‐donor and π‐acceptor groups at C(1) and C(4), respectively, exhibit a strongly enhanced heptalene band I in the spectral region of 450 – 500 nm in MeCN (Table 7 and Figs. 47), whereby the specific position is dependent on the π‐donor quality of the N,N‐dialkylamino substituent at C(2′) and the π‐acceptor property of the group at C(4). The position of heptalene band I is also strongly solvent‐dependent as is demonstrated in the case of heptalene 8i (Table 9). A good linear correlation with the CT band of 1‐(diethylamino)‐4‐nitrobenzene or (E)‐4‐(dimethylamino)‐β‐nitrostyrene (Figs. 11 and 12) characterizes the heptalene band I also as an electronic CT transition. Irradiation into this band of 8i leads, as observed in other cases (cf. 1]), to a double‐bond shift in the heptalene moiety (→ 8′i ; Figs. 8 – 10). On warming in solution, 8′i is converted quantitatively to 8i .
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号