首页 | 本学科首页   官方微博 | 高级检索  
     


Temperature‐Dependent Behavior of the Dual Fluorescence of 2‐(3‐Fluorophenyl)‐2,3‐dihydro‐1H‐benzo[f]isoindole‐1,3‐dione
Authors:Pierre Valat,Vé  ronique Wintgens,Jean Kossanyi,Là  szlò   Biczò  k,Attila Demeter,Tibor Bé  rces
Abstract:The fluorescence behavior of 2‐(3‐fluorophenyl)‐2,3‐dihydro‐1H‐benzo[f]isoindole‐1,3‐dione ( 1 ) was studied in solvents of different polarity and viscosity. Dual luminescence is observed and the short‐wavelength emission is found to increase considerably with the solvent polarity. The ratio of the fluorescence quantum yield of the two states emitting, the one (SW*) at short wavelength and the other (LW*) at long wavelength, shows a bell‐shaped dependence on the reciprocal of the temperature in diethyl ether, butyronitrile, and propane‐1,2,3‐triol triacetate (glycerol triacetate; GTA). This has been interpreted as the result of a reversible interconversion between the two states. The enthalpy difference between the SW* and LW* excited states, as deduced from the slope of the ln (Φ/Φ) vs. 1/T curves in the high temperature range, is found to be solvent polarity and solvent viscosity independent as the same value (−7.3 kJ/mol) is obtained in the three above‐mentioned solvents. The independence from polarity is the consequence of a similar difference in dipole moment between the ground‐state and the SW* and LW* excited states (4.5 and 4.9 D, respectively, derived from solvatochromy). The activation energy of the SW*→LW* step deduced from the low temperature measurements in the nonviscous solvents, increases with solvent polarity (11.6 and 17.5 kJ/mol for diethyl ether and butyronitrile, respectively); they are greater than the viscous‐flow activation energy of the solvents indicating that the resolvation of the excited dipole controls the kinetics. In the nonviscous solvents, the LW* state originates from the SW* state, while in the viscous GTA solution, both states are formed simultaneously within the 1‐ps laser pulse.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号